DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats.
نویسندگان
چکیده
Isolated transcription complexes contain a protein kinase that phosphorylates the heptapeptide repeats of the carboxy-terminal domain (CTD) of the RNA polymerase II (RNAP II) large subunit in an apparently promoter-dependent manner. We now show that the essential features of this reaction can be reproduced in a reconstituted system containing three macromolecular components: a fusion protein consisting of the CTD of RNAP II fused to a heterologous DNA-binding domain, an activating DNA fragment containing the recognition sequence for the fusion protein, and a protein kinase that binds nonspecifically to DNA. This kinase closely resembles a previously known DNA-dependent protein kinase. Evidently, the association of the CTD with DNA provides a key signal for phosphorylation. There appears to be no absolute requirement for specific contacts with other DNA-bound transcription factors.
منابع مشابه
A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase II.
A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase IIA has been partially purified and characterized. The kinase has a native molecular weight of about 200 kilodaltons. This kinase utilizes Mg2+ and ATP and transfers about 20 phosphates to the heptapeptide repeats Pro-Thr-Ser-Pro-Ser-Tyr-Ser in the carboxyl-terminal domain of the 220-kilodalton subunit of...
متن کاملThe glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain.
Glucocorticoids repress NFkappaB-mediated activation of proinflammatory genes such as interleukin-8 (IL-8) and ICAM-1. Our experiments suggest that the glucocorticoid receptor (GR) confers this effect by associating through protein-protein interactions with NFkappaB bound at each of these genes. That is, we show that the GR zinc binding region (ZBR), which includes the DNA binding and dimerizat...
متن کاملPhosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit.
The carboxyl-terminal domain (CTD) of the largest subunit of eukaryotic RNA polymerase II can be phosphorylated by a p34cdc2/CDC28-containing CTD kinase. Phosphorylated serine (or threonine) is located at positions 2 and 5 in the repetitive heptapeptide consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. We show here that phosphorylation of the mouse CTD retards its electrophoretic mobility ...
متن کاملA rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation
The complexity of many RNA processing pathways is such that a conventional systems modelling approach is inadequate to represent all the molecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNA polymerase II (RNAPII) C-terminal domain (CTD; a flexible tail-like extension of the lar...
متن کاملGrowth-related changes in phosphorylation of yeast RNA polymerase II.
The largest subunit of RNA polymerase II contains a unique C-terminal domain (CTD) consisting of tandem repeats of the consensus heptapeptide sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Two forms of the largest subunit can be separated by SDS-polyacrylamide gel electrophoresis. The faster migrating form termed IIA contains little or no phosphate on the CTD, whereas the slower migrating II0 for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 6 3 شماره
صفحات -
تاریخ انتشار 1992